Mathematics for Machine Learning

- Linear Algebra: Norms, Inner Products \& Orthogonality

Joseph Chuang-Chieh Lin
Department of Computer Science \& Information Engineering, Tamkang University

Fall 2023

Credits for the resource

- The slides are based on the textbooks:
- Marc Peter Deisenroth, A. Aldo Faisal, and Cheng Soon Ong: Mathematics for Machine Learning. Cambridge University Press. 2020.
- Howard Anton, Chris Rorres, Anton Kaul: Elementary Linear Algebra. Wiley. 2019.
- We could partially refer to the monograph:

Francesco Orabona: A Modern Introduction to Online Learning. https://arxiv.org/abs/1912.13213

Outline

(1) Norms
(2) Inner Products
(3) Lengths \& Distances

4 Angles and Orthogonality
(5) Orthonormal Basis
(6) Inner Product of Functions

Outline

(2) Inner Products
(3) Lengths \& Distances

4 Angles and Orthogonality
(5) Orthonormal Basis
(6) Inner Product of Functions

Norm

Norm

A norm on a vector space V is a function

$$
\begin{aligned}
\|\cdot\|: & V \mapsto \mathbb{R} \\
\mathbf{x} & \mapsto\|\mathbf{x}\|
\end{aligned}
$$

such that for $\lambda \in \mathbb{R}$ and $\mathbf{x}, \mathbf{y} \in V$ the following hold:

- $\|\lambda \mathbf{x}\|=|\lambda|\|\mathbf{x}\|$.
- $\|\mathbf{x}+\mathbf{y}\| \leq\|\mathbf{x}\|+\|\mathbf{y}\|$.
- $\|\mathbf{x}\| \geq 0$ and $\|\mathbf{x}\|=0 \Leftrightarrow \mathbf{x}=\mathbf{0}$.
ℓ_{1} norm $\& \ell_{2}$ norm

ℓ_{1} norm (Manhattan Norm)

For $\mathbf{x} \in \mathbb{R}^{n}$,

$$
\|\mathbf{x}\|_{1}:=\sum_{i=1}^{n}\left|x_{i}\right| .
$$

ℓ_{2} norm
For $\mathbf{x} \in \mathbb{R}^{n}$,

$$
\|\mathbf{x}\|_{2}:=\sqrt{\sum_{i=1}^{n} x_{i}^{2}}=\sqrt{\mathbf{x}^{\top} \mathbf{x}}
$$

Outline

1) Norms

(2) Inner Products

(3) Lengths \& Distances

4 Angles and Orthogonality
(5) Orthonormal Basis
(6) Inner Product of Functions

Dot Product

Dot Product

For $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$,

$$
\mathbf{x}^{\top} \mathbf{y}=\sum_{i=1}^{n} x_{i} y_{i}
$$

General Inner Products

Bilinear Mapping f

Given a vector space V. For all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in V, \lambda, \psi \in \mathbb{R}$, such that

$$
\begin{gathered}
f(\lambda \mathbf{x}+\psi \mathbf{y}, \mathbf{z})=\lambda f(\mathbf{x}, \mathbf{z})+\psi f(\mathbf{y}, \mathbf{z}) \\
f(\mathbf{x}, \lambda \mathbf{y}+\psi \mathbf{z})=\lambda f(\mathbf{x}, \mathbf{y})+\psi f(\mathbf{x}, \mathbf{z})
\end{gathered}
$$

General Inner Products

Bilinear Mapping f

Given a vector space V. For all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in V, \lambda, \psi \in \mathbb{R}$, such that

$$
\begin{array}{r}
f(\lambda \mathbf{x}+\psi \mathbf{y}, \mathbf{z})=\lambda f(\mathbf{x}, \mathbf{z})+\psi f(\mathbf{y}, \mathbf{z}) \quad \text { (linear in the 1st argument) } \\
f(\mathbf{x}, \lambda \mathbf{y}+\psi \mathbf{z})=\lambda f(\mathbf{x}, \mathbf{y})+\psi f(\mathbf{x}, \mathbf{z}) \quad \text { (linear in the 2nd argument) }
\end{array}
$$

Symmetric \& Positive Definite (1/6)

Symmetric

Let V be a vector space and $f: V \times V \mapsto \mathbb{R}$ be a bilinear mapping. Then f is symmetric if $f(\mathbf{x}, \mathbf{y})=f(\mathbf{y}, \mathbf{x})$.

Positive Definite

Let V be a vector space and $f: V \times V \mapsto \mathbb{R}$ be a bilinear mapping. Then f is positive definite if $\forall \mathbf{x} \in V \backslash\{\mathbf{0}\}$, we have

$$
f(\mathbf{x}, \mathbf{x})>0 \text { and } f(\mathbf{0}, \mathbf{0})=0 .
$$

Symmetric \& Positive Definite (1/6)

Symmetric

Let V be a vector space and $f: V \times V \mapsto \mathbb{R}$ be a bilinear mapping. Then f is symmetric if $f(\mathbf{x}, \mathbf{y})=f(\mathbf{y}, \mathbf{x})$.

Positive Definite

Let V be a vector space and $f: V \times V \mapsto \mathbb{R}$ be a bilinear mapping. Then f is positive definite if $\forall \mathbf{x} \in V \backslash\{\mathbf{0}\}$, we have

$$
f(\mathbf{x}, \mathbf{x})>0 \text { and } f(\mathbf{0}, \mathbf{0})=0
$$

Inner Product

A positive definite \& symmetric bilinear mapping $f: V \times V \mapsto \mathbb{R}$ is called an inner product on V and we write $f(\mathbf{x}, \mathbf{y})$ as $\langle\mathbf{x}, \mathbf{y}\rangle$.

Symmetric \& Positive Definite (2/6)

- Important in machine learning.
- Matrix decompositions.
- Key in defining kernels in the SVM (support vector machine).

An Exercise

Exercise

Consider $V=\mathbb{R}^{2}$. Define that

$$
\langle\mathbf{x}, \mathbf{y}\rangle:=x_{1} y_{1}-\left(x_{1} y_{2}+x_{2} y_{1}\right)+2 x_{2} y_{2} .
$$

Show that $\langle\cdot, \cdot\rangle$ is an inner product.

Symmetric \& Positive Definite (3/6)

Consider an n-dimensional vector space V with an inner product $\langle\cdot\rangle: V \times V \mapsto \mathbb{R}$ and an ordered basis $B=\left(\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right)$ of V.

- Assume that for $\mathbf{x}, \mathbf{y} \in V$,
- $\mathbf{x}=\sum_{i=1}^{n} \psi_{i} \mathbf{b}_{i}$
- $\mathbf{y}=\sum_{j=1}^{n} \lambda_{j} \mathbf{b}_{j}$
for suitable $\psi_{i}, \lambda_{j} \in \mathbb{R}$.
- By the bilinearity of the inner product, we have

$$
\langle\mathbf{x}, \mathbf{y}\rangle=\left\langle\sum_{i=1}^{n} \psi_{i} \mathbf{b}_{i}, \sum_{j=1}^{n} \lambda_{j} \mathbf{b}_{j}\right\rangle
$$

Symmetric \& Positive Definite (3/6)

Consider an n-dimensional vector space V with an inner product $\langle\cdot\rangle: V \times V \mapsto \mathbb{R}$ and an ordered basis $B=\left(\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right)$ of V.

- Assume that for $\mathbf{x}, \mathbf{y} \in V$,
- $\mathbf{x}=\sum_{i=1}^{n} \psi_{i} \mathbf{b}_{i}$
- $\mathbf{y}=\sum_{j=1}^{n} \lambda_{j} \mathbf{b}_{j}$
for suitable $\psi_{i}, \lambda_{j} \in \mathbb{R}$.
- By the bilinearity of the inner product, we have

$$
\langle\mathbf{x}, \mathbf{y}\rangle=\left\langle\sum_{i=1}^{n} \psi_{i} \mathbf{b}_{i}, \sum_{j=1}^{n} \lambda_{j} \mathbf{b}_{j}\right\rangle=\sum_{i=1}^{n} \sum_{j=1}^{n} \psi_{i}\left\langle\mathbf{b}_{i}, \mathbf{b}_{j}\right\rangle \lambda_{j}=\hat{\mathbf{x}}^{\top} \boldsymbol{A} \hat{\mathbf{y}},
$$

where $\hat{\mathbf{x}}$ and $\hat{\mathbf{y}}$ are the coordinates of \mathbf{b} w.r.t. the basis B.

Symmetric \& Positive Definite (3/6)

Consider an n-dimensional vector space V with an inner product $\langle\cdot\rangle: V \times V \mapsto \mathbb{R}$ and an ordered basis $B=\left(\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right)$ of V.

- Assume that for $\mathbf{x}, \mathbf{y} \in V$,
- $\mathbf{x}=\sum_{i=1}^{n} \psi_{i} \mathbf{b}_{i}$
- $\mathbf{y}=\sum_{j=1}^{n} \lambda_{j} \mathbf{b}_{j}$
for suitable $\psi_{i}, \lambda_{j} \in \mathbb{R}$.
- By the bilinearity of the inner product, we have

$$
\langle\mathbf{x}, \mathbf{y}\rangle=\left\langle\sum_{i=1}^{n} \psi_{i} \mathbf{b}_{i}, \sum_{j=1}^{n} \lambda_{j} \mathbf{b}_{j}\right\rangle=\sum_{i=1}^{n} \sum_{j=1}^{n} \psi_{i}\left\langle\mathbf{b}_{i}, \mathbf{b}_{j}\right\rangle \lambda_{j}=\hat{\mathbf{x}}^{\top} \boldsymbol{A} \hat{\mathbf{y}},
$$

where $\hat{\mathbf{x}}$ and $\hat{\mathbf{y}}$ are the coordinates of \mathbf{b} w.r.t. the basis B.
\star Note that the symmetry of the inner product implies that \boldsymbol{A} is symmetric.

Example

Consider $V=\mathbb{R}^{2}$ with an inner product $\langle\cdot\rangle: V \times V \mapsto \mathbb{R}$ and an ordered basis $B=\left(\mathbf{q}_{1}, \mathbf{q}_{2}\right)$ of V, where $\mathbf{q}_{1}=[1,1]^{\top}, \mathbf{q}_{2}=[1,-2]^{\top}$.
Compute $\langle\mathbf{x}, \mathbf{y}\rangle$, where

$$
\begin{aligned}
& \mathbf{x}=2 \mathbf{q}_{1}+3 \mathbf{q}_{2} \\
& \mathbf{y}=-\mathbf{q}_{1}+2 \mathbf{q}_{2}
\end{aligned}
$$

- $\langle\mathbf{x}, \mathbf{y}\rangle=$

Example

Consider $V=\mathbb{R}^{2}$ with an inner product $\langle\cdot\rangle: V \times V \mapsto \mathbb{R}$ and an ordered basis $B=\left(\mathbf{q}_{1}, \mathbf{q}_{2}\right)$ of V, where $\mathbf{q}_{1}=[1,1]^{\top}, \mathbf{q}_{2}=[1,-2]^{\top}$.
Compute $\langle\mathbf{x}, \mathbf{y}\rangle$, where

$$
\begin{aligned}
& \mathbf{x}=2 \mathbf{q}_{1}+3 \mathbf{q}_{2} \\
& \mathbf{y}=-\mathbf{q}_{1}+2 \mathbf{q}_{2}
\end{aligned}
$$

- $\langle\mathbf{x}, \mathbf{y}\rangle=-2\left\langle\mathbf{q}_{1}, \mathbf{q}_{1}\right\rangle-3\left\langle\mathbf{q}_{2}, \mathbf{q}_{1}\right\rangle+4\left\langle\mathbf{q}_{1}, \mathbf{q}_{2}\right\rangle+6\left\langle\mathbf{q}_{2}, \mathbf{q}_{2}\right\rangle$

Example

Consider $V=\mathbb{R}^{2}$ with an inner product $\langle\cdot\rangle: V \times V \mapsto \mathbb{R}$ and an ordered basis $B=\left(\mathbf{q}_{1}, \mathbf{q}_{2}\right)$ of V, where $\mathbf{q}_{1}=[1,1]^{\top}, \mathbf{q}_{2}=[1,-2]^{\top}$.
Compute $\langle\mathbf{x}, \mathbf{y}\rangle$, where

$$
\begin{aligned}
& \mathbf{x}=2 \mathbf{q}_{1}+3 \mathbf{q}_{2} \\
& \mathbf{y}=-\mathbf{q}_{1}+2 \mathbf{q}_{2}
\end{aligned}
$$

- $\langle\mathbf{x}, \mathbf{y}\rangle=-2\left\langle\mathbf{q}_{1}, \mathbf{q}_{1}\right\rangle-3\left\langle\mathbf{q}_{2}, \mathbf{q}_{1}\right\rangle+4\left\langle\mathbf{q}_{1}, \mathbf{q}_{2}\right\rangle+6\left\langle\mathbf{q}_{2}, \mathbf{q}_{2}\right\rangle=25$.
- W.r.t. the standard basis,

Example

Consider $V=\mathbb{R}^{2}$ with an inner product $\langle\cdot\rangle: V \times V \mapsto \mathbb{R}$ and an ordered basis $B=\left(\mathbf{q}_{1}, \mathbf{q}_{2}\right)$ of V, where $\mathbf{q}_{1}=[1,1]^{\top}, \mathbf{q}_{2}=[1,-2]^{\top}$.
Compute $\langle\mathbf{x}, \mathbf{y}\rangle$, where

$$
\begin{aligned}
& \mathbf{x}=2 \mathbf{q}_{1}+3 \mathbf{q}_{2} \\
& \mathbf{y}=-\mathbf{q}_{1}+2 \mathbf{q}_{2}
\end{aligned}
$$

- $\langle\mathbf{x}, \mathbf{y}\rangle=-2\left\langle\mathbf{q}_{1}, \mathbf{q}_{1}\right\rangle-3\left\langle\mathbf{q}_{2}, \mathbf{q}_{1}\right\rangle+4\left\langle\mathbf{q}_{1}, \mathbf{q}_{2}\right\rangle+6\left\langle\mathbf{q}_{2}, \mathbf{q}_{2}\right\rangle=25$.
- W.r.t. the standard basis,

$$
\begin{aligned}
& \mathbf{x}=5 \mathbf{e}_{1}-4 \mathbf{e}_{2} \\
& \mathbf{y}=\mathbf{e}_{1}-5 \mathbf{e}_{2}
\end{aligned}
$$

Example

Consider $V=\mathbb{R}^{2}$ with an inner product $\langle\cdot\rangle: V \times V \mapsto \mathbb{R}$ and an ordered basis $B=\left(\mathbf{q}_{1}, \mathbf{q}_{2}\right)$ of V, where $\mathbf{q}_{1}=[1,1]^{\top}, \mathbf{q}_{2}=[1,-2]^{\top}$.
Compute $\langle\mathbf{x}, \mathbf{y}\rangle$, where

$$
\begin{aligned}
& \mathbf{x}=2 \mathbf{q}_{1}+3 \mathbf{q}_{2} \\
& \mathbf{y}=-\mathbf{q}_{1}+2 \mathbf{q}_{2}
\end{aligned}
$$

- $\langle\mathbf{x}, \mathbf{y}\rangle=-2\left\langle\mathbf{q}_{1}, \mathbf{q}_{1}\right\rangle-3\left\langle\mathbf{q}_{2}, \mathbf{q}_{1}\right\rangle+4\left\langle\mathbf{q}_{1}, \mathbf{q}_{2}\right\rangle+6\left\langle\mathbf{q}_{2}, \mathbf{q}_{2}\right\rangle=25$.
- W.r.t. the standard basis,

$$
\begin{aligned}
& \mathbf{x}=5 \mathbf{e}_{1}-4 \mathbf{e}_{2} \Longrightarrow \hat{\mathbf{x}}=[5,-4]^{\top} \\
& \mathbf{y}=\mathbf{e}_{1}-5 \mathbf{e}_{2} \Longrightarrow \hat{\mathbf{y}}=[1,-5]^{\top}
\end{aligned}
$$

Example

Consider $V=\mathbb{R}^{2}$ with an inner product $\langle\cdot\rangle: V \times V \mapsto \mathbb{R}$ and an ordered basis $B=\left(\mathbf{q}_{1}, \mathbf{q}_{2}\right)$ of V, where $\mathbf{q}_{1}=[1,1]^{\top}, \mathbf{q}_{2}=[1,-2]^{\top}$.
Compute $\langle\mathbf{x}, \mathbf{y}\rangle$, where

$$
\begin{aligned}
& \mathbf{x}=2 \mathbf{q}_{1}+3 \mathbf{q}_{2} \\
& \mathbf{y}=-\mathbf{q}_{1}+2 \mathbf{q}_{2}
\end{aligned}
$$

- $\langle\mathbf{x}, \mathbf{y}\rangle=-2\left\langle\mathbf{q}_{1}, \mathbf{q}_{1}\right\rangle-3\left\langle\mathbf{q}_{2}, \mathbf{q}_{1}\right\rangle+4\left\langle\mathbf{q}_{1}, \mathbf{q}_{2}\right\rangle+6\left\langle\mathbf{q}_{2}, \mathbf{q}_{2}\right\rangle=25$.
- W.r.t. the standard basis,

$$
\begin{aligned}
& \mathbf{x}=5 \mathbf{e}_{1}-4 \mathbf{e}_{2} \Longrightarrow \hat{\mathbf{x}}=[5,-4]^{\top} \\
& \mathbf{y}=\mathbf{e}_{1}-5 \mathbf{e}_{2} \Longrightarrow \hat{\mathbf{y}}=[1,-5]^{\top}
\end{aligned}
$$

$$
\boldsymbol{A}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

Example

Consider $V=\mathbb{R}^{2}$ with an inner product $\langle\cdot\rangle: V \times V \mapsto \mathbb{R}$ and an ordered basis $B=\left(\mathbf{q}_{1}, \mathbf{q}_{2}\right)$ of V, where $\mathbf{q}_{1}=[1,1]^{\top}, \mathbf{q}_{2}=[1,-2]^{\top}$.
Compute $\langle\mathbf{x}, \mathbf{y}\rangle$, where

$$
\begin{aligned}
& \mathbf{x}=2 \mathbf{q}_{1}+3 \mathbf{q}_{2} \\
& \mathbf{y}=-\mathbf{q}_{1}+2 \mathbf{q}_{2}
\end{aligned}
$$

- $\langle\mathbf{x}, \mathbf{y}\rangle=-2\left\langle\mathbf{q}_{1}, \mathbf{q}_{1}\right\rangle-3\left\langle\mathbf{q}_{2}, \mathbf{q}_{1}\right\rangle+4\left\langle\mathbf{q}_{1}, \mathbf{q}_{2}\right\rangle+6\left\langle\mathbf{q}_{2}, \mathbf{q}_{2}\right\rangle=25$.
- W.r.t. the standard basis,

$$
\begin{aligned}
\mathbf{x} & =5 \mathbf{e}_{1}-4 \mathbf{e}_{2} \Longrightarrow \hat{\mathbf{x}}=[5,-4]^{\top} \\
\mathbf{y} & =\mathbf{e}_{1}-5 \mathbf{e}_{2} \Longrightarrow \hat{\mathbf{y}}=[1,-5]^{\top} \\
\boldsymbol{A}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \quad \Longrightarrow & \hat{\mathbf{x}}^{\top} \boldsymbol{A} \hat{\mathbf{y}}=[5,-4]\left[\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{c}
1 \\
-5
\end{array}\right]=25 .
\end{aligned}
$$

Symmetric \& Positive Definite (4/6)

The positive definiteness of the inner product implies that

$$
\forall \mathbf{x} \in V \backslash\{\mathbf{0}\}: \mathbf{x}^{\top} \boldsymbol{A} \mathbf{x}>0
$$

Symmetric, Positive Definite Matrix

A symmetric matrix $\boldsymbol{A} \in \mathbb{R}^{n \times n}$ that satisfies the property:

$$
\forall \mathbf{x} \in V \backslash\{\mathbf{0}\}: \mathbf{x}^{\top} \boldsymbol{A} \mathbf{x}>0
$$

is called symmetric, positive definite (or just positive definite).
If only \geq holds, then \boldsymbol{A} is called symmetric, positive semidefinite.

Example

Consider the matrices $\boldsymbol{A}_{1}=\left[\begin{array}{ll}9 & 6 \\ 6 & 5\end{array}\right], \quad \boldsymbol{A}_{2}=\left[\begin{array}{ll}9 & 6 \\ 6 & 3\end{array}\right]$

- \boldsymbol{A}_{1} is positive definite (why?)

Example

Consider the matrices $\boldsymbol{A}_{1}=\left[\begin{array}{ll}9 & 6 \\ 6 & 5\end{array}\right], \quad \boldsymbol{A}_{2}=\left[\begin{array}{ll}9 & 6 \\ 6 & 3\end{array}\right]$

- \boldsymbol{A}_{1} is positive definite (why?)
- \boldsymbol{A}_{2} is NOT positive definite (why?)

Symmetric \& Positive Definite (5/6)

If $\boldsymbol{A} \in \mathbb{R}^{n \times n}$ is symmetric, positive definite, then

$$
\langle\mathbf{x}, \mathbf{y}\rangle=\hat{\mathbf{x}}^{\top} \boldsymbol{A} \hat{\mathbf{y}} .
$$

Symmetric \& Positive Definite (5/6)

If $\boldsymbol{A} \in \mathbb{R}^{n \times n}$ is symmetric, positive definite, then

$$
\langle\mathbf{x}, \mathbf{y}\rangle=\hat{\mathbf{x}}^{\top} \boldsymbol{A} \hat{\mathbf{y}} .
$$

This defines an inner product w.r.t. an ordered basis B, where $\hat{\mathbf{x}}, \hat{\mathbf{y}}$ are the coordinates of \mathbf{x}, \mathbf{y} w.r.t. B.

Remark

Semidefinite Matrix

If $\boldsymbol{A} \in \mathbb{R}^{n \times n}$ is symmetric and for all \mathbf{x} we have $\mathbf{x}^{\top} \boldsymbol{A} \mathbf{x} \geq 0$, we call \boldsymbol{A} a semidefinite matrix.

Remark: If $\boldsymbol{A} \in \mathbb{R}^{n \times n}$ is not necessarily symmetric \& positive definite:

Remark

Semidefinite Matrix

If $\boldsymbol{A} \in \mathbb{R}^{n \times n}$ is symmetric and for all \mathbf{x} we have $\mathbf{x}^{\top} \boldsymbol{A} \mathbf{x} \geq 0$, we call \boldsymbol{A} a semidefinite matrix.

Remark: If $\boldsymbol{A} \in \mathbb{R}^{n \times n}$ is not necessarily symmetric \& positive definite:

- Try $\hat{\boldsymbol{A}}:=\boldsymbol{A} \boldsymbol{A}^{\top}$.

Remark

Semidefinite Matrix

If $\boldsymbol{A} \in \mathbb{R}^{n \times n}$ is symmetric and for all \mathbf{x} we have $\mathbf{x}^{\top} \boldsymbol{A} \mathbf{x} \geq 0$, we call \boldsymbol{A} a semidefinite matrix.

Remark: If $\boldsymbol{A} \in \mathbb{R}^{n \times n}$ is not necessarily symmetric \& positive definite:

- Try $\hat{\boldsymbol{A}}:=\boldsymbol{A A}^{\top}$.
- Â must be semidefinite

Remark

Semidefinite Matrix

If $\boldsymbol{A} \in \mathbb{R}^{n \times n}$ is symmetric and for all \mathbf{x} we have $\mathbf{x}^{\top} \boldsymbol{A} \mathbf{x} \geq 0$, we call \boldsymbol{A} a semidefinite matrix.

Remark: If $\boldsymbol{A} \in \mathbb{R}^{n \times n}$ is not necessarily symmetric \& positive definite:

- Try $\hat{\boldsymbol{A}}:=\boldsymbol{A A}^{\top}$.
- $\hat{\boldsymbol{A}}$ must be semidefinite (why?).

Symmetric \& Positive Definite (6/6)

The following properties hold if $\boldsymbol{A} \in \mathbb{R}^{n \times n}$ is symmetric and positive definite.

- $\operatorname{null}(\boldsymbol{A})=\{\mathbf{0}\}$.

Symmetric \& Positive Definite (6/6)

The following properties hold if $\boldsymbol{A} \in \mathbb{R}^{n \times n}$ is symmetric and positive definite.

- $\operatorname{null}(\boldsymbol{A})=\{\mathbf{0}\}$.
- Since $\mathbf{x}^{\top} \boldsymbol{A} \mathbf{x}>0$ for all $\mathbf{x}>0 \Rightarrow \boldsymbol{A} \mathbf{x} \neq \mathbf{0}$ if $\mathbf{x} \neq \mathbf{0}$.
- For the diagonal elements $a_{i j}$ of $\boldsymbol{A}, a_{i i}=\mathbf{e}_{i}^{\top} \boldsymbol{A} \mathbf{e}_{i}>0$.
- \mathbf{e}_{i} : the i th vector of the standard basis of \mathbb{R}^{n}.

Outline

(1) Norms

(2) Inner Products
(3) Lengths \& Distances

4 Angles and Orthogonality
(5) Orthonormal Basis
(6) Inner Product of Functions

Remark

- Note that any inner product induces a norm:

$$
\|\mathbf{x}\|=\sqrt{\langle\mathbf{x}, \mathbf{x}\rangle}
$$

Cauchy-Schwarz Inequality

For an inner product vector space $(V,\langle\cdot\rangle)$, the induced norm $\|\cdot\|$ satisfies the Cauchy-Schwarz inequality

$$
|\langle\mathbf{x}, \mathbf{y}\rangle| \leq\|\mathbf{x}\|\|\mathbf{y}\| .
$$

Lengths of Vectors

Example

Compute the length of a vector $\mathbf{x}=[1,1]^{\top} \in \mathbb{R}^{2}$ using

- Dot product
- $\langle\mathbf{x}, \mathbf{y}\rangle:=\mathbf{x}^{\top}\left[\begin{array}{cc}1 & -\frac{1}{2} \\ -\frac{1}{2} & 1\end{array}\right] \mathbf{y}=x_{1} y_{1}-\frac{1}{2}\left(x_{1} y_{2}+x_{2} y_{1}\right)+x_{2} y_{2}$.

Distance \& Metric

Distance

Consider an inner product space $(V,\langle\cdot\rangle)$. Then, the distance between \mathbf{x} and \mathbf{y} for $\mathbf{x}, \mathbf{y} \in V$ is

$$
d(\mathbf{x}, \mathbf{y}):=\|\mathbf{x}-\mathbf{y}\|=\sqrt{\langle\mathbf{x}-\mathbf{y}, \mathbf{x}-\mathbf{y}\rangle} .
$$

- The mapping $d: V \times V \mapsto \mathbb{R}$ for which (\mathbf{x}, \mathbf{y}) maps to $d(\mathbf{x}, \mathbf{y})$ is called a metric

Distance \& Metric

Distance

Consider an inner product space $(V,\langle\cdot\rangle)$. Then, the distance between \mathbf{x} and \mathbf{y} for $\mathbf{x}, \mathbf{y} \in V$ is

$$
d(\mathbf{x}, \mathbf{y}):=\|\mathbf{x}-\mathbf{y}\|=\sqrt{\langle\mathbf{x}-\mathbf{y}, \mathbf{x}-\mathbf{y}\rangle} .
$$

- The mapping $d: V \times V \mapsto \mathbb{R}$ for which (\mathbf{x}, \mathbf{y}) maps to $d(\mathbf{x}, \mathbf{y})$ is called a metric, which satisfies:

Distance \& Metric

Distance

Consider an inner product space $(V,\langle\cdot\rangle)$. Then, the distance between \mathbf{x} and \mathbf{y} for $\mathbf{x}, \mathbf{y} \in V$ is

$$
d(\mathbf{x}, \mathbf{y}):=\|\mathbf{x}-\mathbf{y}\|=\sqrt{\langle\mathbf{x}-\mathbf{y}, \mathbf{x}-\mathbf{y}\rangle} .
$$

- The mapping $d: V \times V \mapsto \mathbb{R}$ for which (\mathbf{x}, \mathbf{y}) maps to $d(\mathbf{x}, \mathbf{y})$ is called a metric, which satisfies:
- positive definite: $d(\mathbf{x}, \mathbf{y}) \geq 0$ for all $\mathbf{x}, \mathbf{y} \in V$ and $d(\mathbf{x}, \mathbf{y})=0$ iff $\mathbf{x}=\mathbf{y}$.
- symmetric: $d(\mathbf{x}, \mathbf{y})=d(\mathbf{y}, \mathbf{x})$ for all $\mathbf{x}, \mathbf{y} \in V$.
- triangular inequality: $d(\mathbf{x}, \mathbf{z}) \leq d(\mathbf{x}, \mathbf{y})+d(\mathbf{y}, \mathbf{z})$.

Outline

(2) Inner Products
(3) Lengths \& Distances

4 Angles and Orthogonality
(5) Orthonormal Basis
(6) Inner Product of Functions

Recall from Senior High School Math

Law of Cosines

$$
\|\mathbf{u}-\mathbf{v}\|^{2}=\|\mathbf{u}\|^{2}+\|\mathbf{v}\|^{2}-2\|\mathbf{u}\|\|\mathbf{v}\| \cos \theta
$$

Recall from Senior High School Math

Law of Cosines

$$
\|\mathbf{u}-\mathbf{v}\|^{2}=\|\mathbf{u}\|^{2}+\|\mathbf{v}\|^{2}-2\|\mathbf{u}\|\|\mathbf{v}\| \cos \theta
$$

Note:

$$
\langle\mathbf{u}-\mathbf{v}, \mathbf{u}-\mathbf{v}\rangle=\|\mathbf{u}\|^{2}+\|\mathbf{v}\|^{2}-2\langle\mathbf{u}, \mathbf{v}\rangle .
$$

Thus,

Recall from Senior High School Math

Law of Cosines

$$
\|\mathbf{u}-\mathbf{v}\|^{2}=\|\mathbf{u}\|^{2}+\|\mathbf{v}\|^{2}-2\|\mathbf{u}\|\|\mathbf{v}\| \cos \theta
$$

Note:

$$
\langle\mathbf{u}-\mathbf{v}, \mathbf{u}-\mathbf{v}\rangle=\|\mathbf{u}\|^{2}+\|\mathbf{v}\|^{2}-2\langle\mathbf{u}, \mathbf{v}\rangle .
$$

Thus,

$$
\langle\mathbf{u}, \mathbf{v}\rangle=\|\mathbf{u}\| \cdot\|\mathbf{v}\| \cos \theta
$$

Angles

Assume that $\mathbf{x} \neq \mathbf{0}, \mathbf{y} \neq \mathbf{0}$. Then by the Cauchy-Schwarz inequality,

$$
-1 \leq \frac{\langle\mathbf{x}, \mathbf{y}\rangle}{\|\mathbf{x}\|\|\mathbf{y}\|} \leq 1
$$

Angles

Assume that $\mathbf{x} \neq \mathbf{0}, \mathbf{y} \neq \mathbf{0}$. Then by the Cauchy-Schwarz inequality,

$$
-1 \leq \frac{\langle\mathbf{x}, \mathbf{y}\rangle}{\|\mathbf{x}\|\|\mathbf{y}\|} \leq 1
$$

Thus, there exists a unique $\theta \in[0, \pi]$, such that

$$
\cos (\theta)=\frac{\langle\mathbf{x}, \mathbf{y}\rangle}{\|\mathbf{x}\|\|\mathbf{y}\|}
$$

Angles

Assume that $\mathbf{x} \neq \mathbf{0}, \mathbf{y} \neq \mathbf{0}$. Then by the Cauchy-Schwarz inequality,

$$
-1 \leq \frac{\langle\mathbf{x}, \mathbf{y}\rangle}{\|\mathbf{x}\|\|\mathbf{y}\|} \leq 1
$$

Thus, there exists a unique $\theta \in[0, \pi]$, such that

$$
\cos (\theta)=\frac{\langle\mathbf{x}, \mathbf{y}\rangle}{\|\mathbf{x}\|\|\mathbf{y}\|}
$$

We call θ the angle between \mathbf{x} and \mathbf{y}.

Orthogonality

Orthogonality

- Two vectors \mathbf{x} and \mathbf{y} are orthogonal if and only if $\langle\mathbf{x}, \mathbf{y}\rangle=0$.
- We write $\mathbf{x} \perp \mathbf{y}$.
- If \mathbf{x} and \mathbf{y} are orthogonal and $\|\mathbf{x}\|=\|\mathbf{y}\|=1$, then \mathbf{x} and \mathbf{y} are both orthonormal.

Orthogonal Matrix

Orthogonal Matrix

A square matrix $\boldsymbol{A} \in \mathbb{R}^{n \times n}$ is an orthogonal matrix iff its columns are orthonormal so that

$$
\boldsymbol{A} \boldsymbol{A}^{\top}=\boldsymbol{I}=\boldsymbol{A}^{\top} \boldsymbol{A}
$$

which implies

$$
\boldsymbol{A}^{-1}=\boldsymbol{A}^{\top}
$$

Remark

Transformations by orthogonal matrices do NOT change the length of a vector.

$$
\|\boldsymbol{A} \mathbf{x}\|^{2}=(\boldsymbol{A} \mathbf{x})^{\top}(\boldsymbol{A} \mathbf{x})=
$$

Orthogonal Matrix

Orthogonal Matrix

A square matrix $\boldsymbol{A} \in \mathbb{R}^{n \times n}$ is an orthogonal matrix iff its columns are orthonormal so that

$$
\boldsymbol{A} \boldsymbol{A}^{\top}=\boldsymbol{I}=\boldsymbol{A}^{\top} \boldsymbol{A}
$$

which implies

$$
\boldsymbol{A}^{-1}=\boldsymbol{A}^{\top}
$$

Remark

Transformations by orthogonal matrices do NOT change the length of a vector.

$$
\|\boldsymbol{A} \mathbf{x}\|^{2}=(\boldsymbol{A} \mathbf{x})^{\top}(\boldsymbol{A} \mathbf{x})=\mathbf{x}^{\top} \boldsymbol{A}^{\top} \boldsymbol{A} \mathbf{x}=
$$

Orthogonal Matrix

Orthogonal Matrix

A square matrix $\boldsymbol{A} \in \mathbb{R}^{n \times n}$ is an orthogonal matrix iff its columns are orthonormal so that

$$
\boldsymbol{A} \boldsymbol{A}^{\top}=\boldsymbol{I}=\boldsymbol{A}^{\top} \boldsymbol{A}
$$

which implies

$$
\boldsymbol{A}^{-1}=\boldsymbol{A}^{\top}
$$

Remark

Transformations by orthogonal matrices do NOT change the length of a vector.

$$
\|\boldsymbol{A} \mathbf{x}\|^{2}=(\boldsymbol{A} \mathbf{x})^{\top}(\boldsymbol{A} \mathbf{x})=\mathbf{x}^{\top} \boldsymbol{A}^{\top} \boldsymbol{A} \mathbf{x}=\mathbf{x}^{\top} \boldsymbol{I} \mathbf{x}=\mathbf{x}^{\top} \mathbf{x}=\|\mathbf{x}\|^{2}
$$

Let θ be the angle between $\boldsymbol{A x}$ and $\boldsymbol{A y}$, what is $\cos \theta$?

Outline

1) Norms

(2) Inner Products
(3) Lengths \& Distances

4 Angles and Orthogonality
(5) Orthonormal Basis
(6) Inner Product of Functions

Orthonormal Basis

Orthonormal Basis

Consider an n-dimensional vector space V and a basis $\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ of V. If for all $i, j=1, \ldots, n$

$$
\begin{align*}
& \left\langle\mathbf{b}_{i}, \mathbf{b}_{j}\right\rangle=0 \quad \text { for } i \neq j \tag{1}\\
& \left\langle\mathbf{b}_{i}, \mathbf{b}_{i}\right\rangle=1 \tag{2}
\end{align*}
$$

then the basis is called an orthonormal basis.

- Only (1) is satisfied \Rightarrow orthogonal basis.

Example

- The standard basis for \mathbb{R}^{n}.
- $\mathbf{b}_{1}=\frac{1}{\sqrt{2}}\left[\begin{array}{l}1 \\ 1\end{array}\right], \mathbf{b}_{2}=\frac{1}{\sqrt{2}}\left[\begin{array}{c}1 \\ -1\end{array}\right]$.

Outline

1) Norms

(2) Inner Products
(3) Lengths \& Distances

4 Angles and Orthogonality
(5) Orthonormal Basis
(6) Inner Product of Functions

Inner Product of Functions

Inner Product of Functions

Given two functions $u, v: \mathbb{R} \mapsto \mathbb{R}$, the inner product of u and v can be defined as

$$
\langle u, v\rangle:=\int_{a}^{b} u(x) v(x) \mathrm{d} x
$$

for lower and upper limits $a, b<\infty$.

Example

Example (Exercise)

- Choose $u(x)=\sin (x)$ and $v(x)=\cos (x)$.
- Define $f(x)=u(x) v(x)$.

Example

Example (Exercise)

- Choose $u(x)=\sin (x)$ and $v(x)=\cos (x)$.
- Define $f(x)=u(x) v(x)$.

- We can observe that $f(-x)=-f(x)$
- $\int_{-\pi}^{\pi} u(x) v(x) \mathrm{d} x=0$.
\star Note: $\int \sin (x) \cos (x) \mathrm{d} x=$

Example

Example (Exercise)

- Choose $u(x)=\sin (x)$ and $v(x)=\cos (x)$.
- Define $f(x)=u(x) v(x)$.

- We can observe that $f(-x)=-f(x)$
- $\int_{-\pi}^{\pi} u(x) v(x) \mathrm{d} x=0$.
\star Note: $\int \sin (x) \cos (x) \mathrm{d} x=\int u \mathrm{~d} u=$

Example

Example (Exercise)

- Choose $u(x)=\sin (x)$ and $v(x)=\cos (x)$.
- Define $f(x)=u(x) v(x)$.

- We can observe that $f(-x)=-f(x)$
- $\int_{-\pi}^{\pi} u(x) v(x) \mathrm{d} x=0$.
\star Note: $\int \sin (x) \cos (x) \mathrm{d} x=\int u \mathrm{~d} u=\frac{1}{2} u^{2}$, where $u=\sin (x)$.

Discussions

